If it's not what You are looking for type in the equation solver your own equation and let us solve it.
27y^2+36y-63=0
a = 27; b = 36; c = -63;
Δ = b2-4ac
Δ = 362-4·27·(-63)
Δ = 8100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{8100}=90$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-90}{2*27}=\frac{-126}{54} =-2+1/3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+90}{2*27}=\frac{54}{54} =1 $
| 14=4h/23 | | 5x²+3x-14=0 | | 4u-6=2(u+4) | | X2-3x-70=0 | | (x-4)^2=0 | | 3(x-2)=3x+2-2(-8x-3) | | 4u-6=2(u-4) | | -19x-4(16-2x)=x+12 | | 1/2(4c-6)=2c+8 | | z/5-7=10/3 | | x/2+2/5=x/5-2/5 | | x^-2=0.01 | | 37=8z-11 | | 7(4+1h)=3h | | 30+6x=11x | | x^-2=00.1 | | z/5-7=3/1/3 | | 3x^2+5x+18=0 | | x^2+x-6=1 | | X(x-4)=4 | | -1t=9(1t-10) | | 7y-6=9-2y | | 2x/3+5=11 | | x^-2=001 | | 2x^2+4900-1400x-2500=0 | | 10x^2+8x-6=0 | | 4x+1-5x=5-(x+ | | 24–3x=2x–1 | | 2x^2+4900-1400x-2500=120 | | 6-1/2b=12 | | x=9/3=8 | | 5x+4+7x-10=180 |